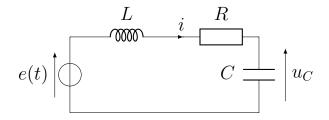

DM $N^{\circ}8$ MPSI2 – 2024/2025

DM n°8

Pour le vendredi 29 novembre 2024 MPSI2 – 2024/2025

Exercice 1 : Étude d'un circuit en régime transitoire



On considère le circuit ci-dessus. On note i l'intensité dans le résistor R, i_1 celle dans le condensateur C, i_2 celle dans le résistor R/2 et u(t) la tension aux bornes du condensateur. L'interrupteur est ouvert depuis longtemps. À t=0, on ferme l'interrupteur.

- 1. Préciser les valeurs des courants et tensions avant la fermeture de l'interrupteur.
- 2. En déduire celles juste après la fermeture de l'interrupteur.
- 3. Préciser les valeurs des courants et tensions longtemps après la fermeture de l'interrupteur.
- 4. Déterminer l'équation différentielle régissant l'évolution de u. Commenter.
- 5. Résoudre cette équation et tracer l'allure de u.
- 6. Donner les expressions de i_1 , i_2 et i; tracer les courbes associées.

Exercice 2: Circuit RLC

On constitue au circuit RLC série ci-dessous et on s'intéresse à l'évolution de la tension u_C aux bornes du condensateur lorsque e(t) est un échelon entre 0 et E. Avant échelon, le régime permanent est établi.

DM $N^{\circ}8$ MPSI2 – 2024/2025

- 1. Quelles sont les valeurs de i et de u_C avant échelon? À $t=0^+$?
- 2. Quelles sont les valeurs de i et de u_C bien après l'échelon (en régime permanent)?
- 3. Établir l'équation différentielle du circuit à t > 0.
- 4. En déduire l'expression du facteur de qualité et de la pulsation propre.
- 5. On prend E = 10 V, $R = 1 \text{ k}\Omega$, L = 10 mH et $C = 1 \mu\text{F}$.
 - (a) Donner les valeurs numériques de ω_0 et Q. Comment est nommé le régime transitoire dans ce cas?
 - (b) Résoudre l'équation différentielle dans ce cas. On donnera la solution avec des valeurs numériques et le temps t.
 - (c) Tracer $u_C(t)$.
- 6. On prend E = 10 V, $R = 0.1 \text{ k}\Omega$, L = 1 mH et C = 1 nF.
 - (a) Donner les valeurs numériques de ω_0 et Q. Comment est nommé le régime transitoire dans ce cas?
 - (b) Résoudre l'équation différentielle dans ce cas. On donnera la solution avec des valeurs numériques et le temps t.
 - (c) Tracer $u_C(t)$.