DM n°4

Pour le vendredi 11 octobre 2024 MPSI2 - 2024/2025

Exercice 1 : Étude d'un téléobjectif d'appareil photo

Un téléobjectif est constitué de deux lentilles minces dont les axes coïncident. La lentille d'entrée L_1 a une vergence $C_1 = 10 \delta$, et est suivie d'une lentille L_2 de vergence $v_2 = -40 \delta$. La distance séparant les centres optiques des deux lentilles est de 8 cm. Un objet de hauteur h = 50 cm est placé à d = 100 m.

- 1. Déterminer les caractéristiques de l'image intermédiaire $\overline{{\rm A_1B_1}}$ donnée par L_1 .
- 2. Quel rôle joue cette image pour la lentille L_2 ? Déterminer les caractéristiques de l'image définitive $\overline{A'B'}$.
- 3. Déterminer la position de la lentille convergente qui permettrait d'arriver au même résultat. Préciser sa distance focale. Conclure quand à l'intérêt du téléobjectif.

Exercice 2: Lunette astronomique

On s'intéresse à quelques éléments du matériel d'un astronome désirant photographier Jupiter lors d'une période favorable à son observation. Dans cette exercice, on modélisera simplement les éléments optiques de son instrument d'observation.

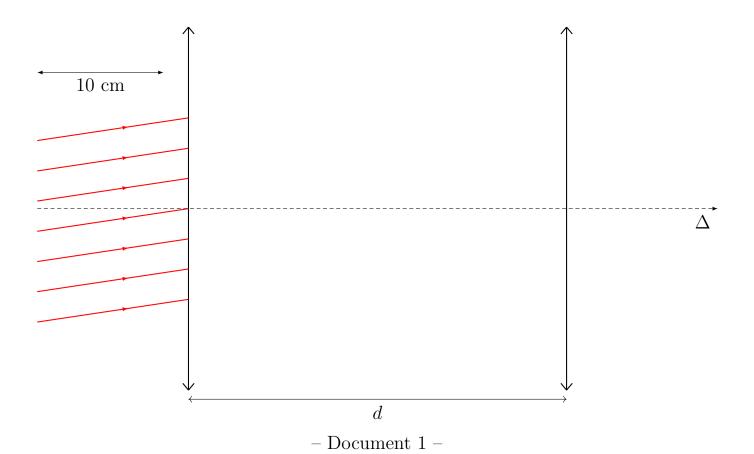
2.1 Étude de la lunette astronomique

On considère une lunette astronomique formée d'un objectif qui est une lentille mince de vergence $v_1 = +4,00 \, \delta$ et d'un oculaire qui est une lentille mince de vergence $v_2 = +20,0 \, \delta$. Ces deux lentilles ont le même axe optique Δ . La lunette est **afocale**, c'est-à-dire que tout les rayons arrivant parallèles entre eux ressortent parallèles entre eux. Les conditions de Gauss sont supposées vérifiées.

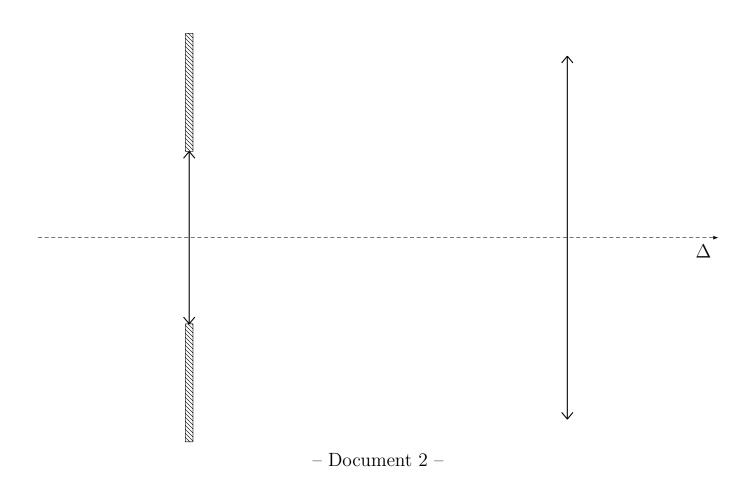
- 1. Déterminer la nature des lentilles ainsi que leurs distances focales f'_1 et f'_2 .
- 2. Quel est l'intérêt, pour un œil sain, d'utiliser une lunette afocale pour l'observation d'objets astronomiques?
- 3. Quelle est la conséquence sur la distance entre les lentilles? Justifier la réponse.
- 4. On observe à travers la lentille un objet ponctuel B_{∞} hors de l'axe optique. Les rayons qui viennent de B_{∞} forment donc un faisceau de rayons parallèles et faisant un angle α avec l'axe optique.
 - (a) Placer sur le schéma O_1 , O_2 , F'_1 , F_2 et F'_2 .
 - (b) Tracer l'image de ce faisceau par la lunette sur le document 1. On notera B_1 l'image intermédiaire formée par l'objectif.

5. On note α' l'angle que forment les rayons émergents en sortie de la lunette. La lunette est caractérisée par son grossissement $G = \alpha'/\alpha$. Indiquer α et α' sur le schéma et montrer que le grossissement de la lunette vaut :

$$G = -\frac{f_1'}{f_2'}$$


Commenter ce résultat.

Pour pouvoir observer un tel objet, il faut que la luminosité qui entre dans l'instrument d'optique soit suffisante.


- 6. Tracer l'image par l'oculaire de la monture de l'objectif sur le document 2. Cette image est appelée cercle oculaire. On note D_1 le diamètre de l'objectif et D_c le diamètre du cercle oculaire.
- 7. En utilisant la formule de conjugaison, exprimer la position du cercle oculaire en fonction de f_2' et f_1' .
- 8. En déduire que le diamètre du cercle oculaire est :

$$D_c = \frac{f_2' D_1}{f_1'}$$

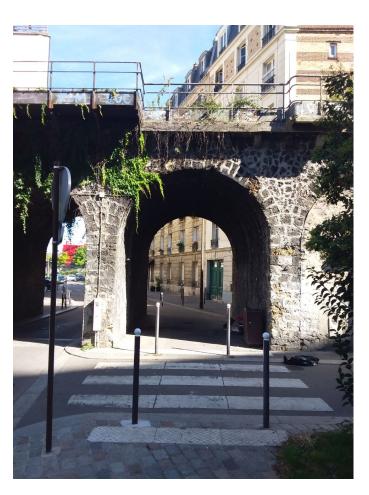
- 9. Justifier, en vous appuyant sur une propriété des lentilles minces, que tous les rayons passant par l'objectif passent par le cercle oculaire.
- 10. Où placer son œil alors pour maximiser la lumière reçue?

DM $n^{\circ}4$ MPSI2 – 2024/2025

2.2 Quand observer Jupiter?

Pour un observateur terrestre, Jupiter est vue sous un angle α qui varie suivant la distance Terre-Jupiter. Les orbites de la Terre et de Jupiter sont assimilées à des cercles dans un même plan, ayant pour centre le Soleil, de rayons

respectifs $R_{\rm T}=150\times 10^6$ km et $R_{\rm J}=780\times 10^6$ km et décrits dans le même sens. Jupiter est modélisée par une sphère de diamètre $d_{\rm J}=140\,000$ km.


- 11. Calculer sous quel angle maximal α_0 on voit Jupiter depuis la Terre. Comment nous-apparaît-elle?
- 12. Cette situation, la plus favorable à l'observation, porte le nom d'opposition de Jupiter. Proposer une explication pour ce nom.

La lunette astronomique de l'observatoire de Meudon, en banlieue parisienne, est composé d'un objectif de distance focale $f'_1 = 16$ m et d'un oculaire de distance focale $f'_2 = 4$ cm. Le diamètre de L₁ est de 0,80 m.

- 13. Calculer l'angle sous lequel est vu Jupiter avec la lunette. Commenter.
- 14. Calculer la position et la taille du cercle oculaire. Commenter la valeur de sa taille.
- 15. Citer deux exemples de phénomènes pouvant affecter la qualité des images obtenues par l'utilisation d'une lunette astronomique.

DM $N^{\circ}4$ MPSI2 – 2024/2025

Exercice 3: Profondeur d'un pont

Voici la photographie d'un pont permettant le passage sous l'ancienne voie ferrée de la petite ceinture à Paris (rue Dampierre - 19ème arrondissement). Sa largeur (horizontale) est de 4,0 m. La photographie est prise à 10 mètres du pont.

La photographie fait 960×1280 pixels. La notice précise qu'il s'agit d'un capteur photo 1/4'' dont on peut trouver (par exemple sur https://en.wikipedia.org/wiki/Image_sensor_format#Table_of_sensor_formats_and_sizes) la taille du capteur : $2,7 \text{ mm} \times 3,6 \text{ mm}$.

Estimer la profondeur du pont et la focale de l'appareil photo.

Vous pouvez retrouver la photographie sur le site pour réaliser des mesures plus précises.